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Note

On the Low-Temperature Expansion of the Thermodynamical
Integral for fcc Lattice

The thermodynamical integral

1 dx dz dy . .
70 = gy || epm = v oy =1 - L 20D O
where
0.(j) = = (|| exp{—~alt — y.(x, y, DI} dx dy dz @
and

yi(x, ¥, z) = ¥(cos x + cos y + cos z),
yo(Xx, ¥, Z) = COS X COS y COS8 2, 3)
ya(x, y, ) = $(cos x cos y + cos x cos z + cos y cos z),

for sc, bec, and fec lattices, respectively, has recently been evaluated for all cubic
lattices [1]. However, the low-temperature (or large «) expansion of Q,(j«) used to
obtain the low-temperature expansion of T;(«) does not agree with that given by
Joyce [2] for the bee lattice and differs from that given below for the fcc lattice.
This discrepancy is probably due to the fact that the asymptotic expansions have
been used outside the region of their validity in the derivation of the final formula
[1, Egs. (35), (38)] by the former authors.!

In this paper we shall express the thermodynamical integral in terms of Mathieu
functions and calculate the low-temperature expansion of 7y(«x) using the method
given by Sips [3].

In order to find the large « expansion of Ty(«) we shall first express Qs(ja) in
terms of Mathieu functions. Let us introduce the homogeneous integral equation
[2,5]

L |7 exp(B cos x, cos x;) y(x;) dx; = Mh(x), @

1 As pointed out by one of referees, this discrepancy is due to the misprints in [1]. Resuits of
corrected formulas agree with that of Joyce [2] and that obtained in the present paper. However,
[1 Egs. (35)] (as well as corrected ones) give evidently wrong results in some cases, for example,
Qy(a, 7, 1, 0, 0) is equal to 0 and Q,(x, 3, 1,0, 0) ~ a3/2 exp[—a(y — 1)] for « large.
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where B = ja/3. The eigenfunctions of Eq. (4) are periodic even Mathieu functions

z1b2n(x) = ceZn(xa _32/4)5
Ponia(X) = cegppa(x, —B2/4)
defined by the Fourier series

(2n)

ceyn(x, q) = Z Az, (q) cos 2rx,
r=0

Clynia(X, 9) = Y AZRV(g) cos(2r + 1) x.

r=0

The eigenvalues A,(B) are

An(B) = AEV(B%/4)/cesn(0, BY4),
Aanin(B) = B/2 BE™V(BY/4)/se5,11(0, BY4),

where the periodic Mathieu function se,,_, is given by the Fourier series

Seania(x, ) = ¥ BE(g) sin2r + 1) x.

r=0

The functions ¢, satisfy the orthogonality relation

% J: l/’n(x) 'ﬁm(x) dx = Sm.n .

From Eqgs. (4) and (9) and Mercer’s expansion theorem it follows that

0B = e 3 (B

)

©®

M

®)

)

(10)

It should be mentioned that Eq. (10) can be also obtained from the expression for

the partition function of the Heisenberg model given in [6].

Sips [4] has shown that A,, and A,,.; have the same asymptotic expansion, so

for large o,

04(B) = 2 T AulBF

n=0

(11)
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(As,, introduced here is equal to (27A,,)~! where A,, is the eigenvalue defined in [4]).
The asymptotic expansion of A,, can be evaluated from the equation [4]

Jonl) = 2m(2B) youl; O | e RZ(0) youl K ) v, (12)

0

where

Z() = (1 — x28) 7 exp{BI(L — 2B} — 1] + x4}
— 1+ (1/298)(2% - x® — x) + (1/2U2)(28 - 3x* — 25 - x® |- x8)
- (1j215 -3 - B)(2° -3 -5 x® — 25325 x8 4 2832 x10 _ x13)
4+ (1/228 -3 BY 357 x5 — 21237 x10 4 28.3.7 . x12

—_ 27 . x14 __l_ le) _'_ (13)
and
K 2k
y2n(K; x) = Z (26)_k Z Ck,2n+2jD2n+2j(x)~ (14)
k=0 j=—2

D,(x) are the parabolic cylinder functions and Cj ,.s; are the coefficients given
for the first few k in [3]. The recurrence relation for the coefficients Cy 5,40; can
also be found here. y,,(K; x) must satisfy the differential equation [3]

(1 — (x%2B)] ¥, (K; ) — (x/2B) y'(K; x) + [A — (*/4)] 3,,,(K; x) = O(B~*),

(15
with

A =2n+%+ (@/2B) + (@/(2B)*) + - (16)

It follows from Egs. (14)-(16) that

2
A1 =~ z Waon_25,7Cr.2n-25 » a7
j=—2
1 2
Crironiem = — —27n_ z w2n+2m—2.1',:ick,2n+2m—27'

j=-2

k

- Z aJ'Ck+1~i.2n+2m
J=1

for m 0,

=0 for m=0. (18)
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Co.2n = 1, the coefficients w,, ; are of the form
wpo = 1/4;  wyy=1/2;  wy,o=—(2p® + 2p + 1)/4;
wp1 = —p(p — D[2;  wy_p=p(p — Np — 2(p — 3)/4

and it is assumed that C; 5, ,; vanish if either 2n 4 2j << Qor |j| > 2i.

It has been shown in [4] that A,, behaves asymptotically as eBf~"-1/2 5o in the
evaluation of Q4(B), for example, up to S-1%/2 only the first two terms of (11) need
to be considered. The values of the first few coefficients b; in the expansion

1 —i
Q:(8) = e ,;, biB (20)
are:
by=1; by =23/8; b,=15/64; by= 107/512; b, = 999/4096. (21)

The combination of Egs. (1) and (20) gives the required asymptotic expansion
1 : »
Ty(o) = Waa3PR Z& bl + 3/2)(e/3)7%, (22)

where {(m) is the Riemann zeta function?
Um)y =3 ™ 23)
=1

Equations (12)-(14) and (17)—(18), although not very easy to use, allow us to
calculate an arbitrary number of terms in the asymptotic expansion of Q48)
or Ty(x). Equation (10) can be used for the numerical evaluation of Q,(8) for an
arbitrary § > 0. It should be mentioned that the first three coefficients of the
expansion (22) agree with that given by Dyson [7] and obtained by him using
physical rather than mathematical arguments.
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