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Note 

On the Low-Temperature Expansion of the Thermodynamical 
Integral for fee Lattice 

The thermodynamical integral 

where 

QLbl = $1) exp{--d[l - 14x, Y, 41> dx dr dz (2) 

and 
y1(x, y, z) = f(COS x + cos y + cos z), 
y2(x, y, z) = cos x cos y cos z, (3) 

Y&9 YY z) = Q( cosxcosy+cosxcosz+cosycosz), 

for SC, bee, and fee lattices, respectively, has recently been evaluated for all cubic 
lattices [l]. However, the low-temperature (or large CX) expansion of Qi(&) used to 
obtain the low-temperature expansion of Ti(cu) does not agree with that given by 
Joyce [2] for the bee lattice and differs from that given below for the fee lattice. 
This discrepancy is probably due to the fact that the asymptotic expansions have 
been used outside the region of their validity in the derivation of the final formula 
[l, Eqs. (39, (38)] by the former authors.’ 

In this paper we shall express the thermodynamical integral in terms of Mathieu 
functions and calculate the low-temperature expansion of TJoL) using the method 
given by Sips [3]. 

In order to find the large 01 expansion of T3(01) we shall first express Q&cY) in 
terms of Mathieu functions. Let us introduce the homogeneous integral equation 
[29 51 

1 R - 
s n 0 

exp@ cos xi cos xi) #(xi) dxj = ha,h(xJ, (4) 

1 As pointed out by one of referees, this discrepancy is due to the misprints in [I]. Results of 
corrected formulas agree with that of Joyce [2] and that obtained in the present paper. However, 
[l Eqs. (35)] (as well as corrected ones) give evidently wrong results in some cases, for example, 
Q,(a, 7, 1, 0, 0) is equal to 0 and Q2(01, 7, 1, 0,O) N ct-s/a exp[--a(q - I)] for a large. 
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where /I = jo1/3. The eigenfunctions of Eq. (4) are periodic even Mathieu functions 

#2nW = ce2,(x, -P/4), 

*2n+1w = ce2,+,k -P/4) 
(5) 

defined by the Fourier series 

ceZn(x, q) = f A!$(q) cos 2rx, 
9-O 

(6) 

ce,,+,(x, q) = f &$(q) cos(2r + 1) x. 
?=O 

The eigenvalues X,(/3) are 

~2n@) = 4Y82/4Yce2n(0, P2/4), 

h2,+&3) = P/2 ~1’““‘(~“/4)/se;l,+1(0, P2/4), 

where the periodic Mathieu function se,,,, is given by the Fourier series 

se,,+,(x, q) = f B*‘(q) sin(2r + 1) x. 
r=0 

(7) 

(8) 

The functions tin satisfy the orthogonality relation 

; /; hdx) &n(x) dx = hn., . (9) 

From Eqs. (4) and (9) and Mercer’s expansion theorem it follows that 

It should be mentioned that Eq. (10) can be also obtained from the expression for 
the partition function of the Heisenberg model given in [6]. 

Sips [4] has shown that A,, and A,,,, have the same asymptotic expansion, so 
for large cy, 

Q3(B) = e-38 2 f ~2,di93 
n-0 

(11) 
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(A,, introduced here is equal to (277&&l where A,, is the eigenvalue defined in [4]). 
The asymptotic expansion of A,, can be evaluated from the equation [4] 

where 

Z(.u> = (1 - x2/2&1/* exp{fl[(l - x*/2/3))‘/* - 11 + -?/4} 

= 1 + (1/25pj(23 - X* - ~4) + (1/211fi2)(26 ’ 3x4 - 2j . x6 + x*) 

+ (l/216 . 3 . p3)(2” . 3 . 5 . x6 - 25 . 32 . 5 * -y* + 29 - 32 . X1’ - X12) 

+ (l/223 . 3 . /3”)(2 12 . 3 . 5 . 7 . x8 - 212 . 3 . 7 . .ylO + 28 . 3 . 7 * xl* 

_ 2’ . $4 + x16) + . . . (13) 

and 

Y*n(K; 4 = f (v3-k f Ck,*n+.*j~*n+2A4. (14) 
I;=0 j--2 

D,(x) are the parabolic cylinder functions and Ck,Pn+2i are the coefficients given 
for the first few k in [3]. The recurrence relation for the coefficients Ck,2n+2i can 
also be found here. y2JK; x) must satisfy the differential equation [3] 

11 - (x"/2/3>1JJ~,w; -4 - wv3~Y'(K; 4 + [A - c~2/4h'2,(~; x> = w-"-1>, 
(15) 

with 

It follows from Eqs. (14)-(16) that 

a kfl = W2n-2i.ICk.2n-23 9 (17) 
j=-2 

C k+1.2n+*m = 1 i -- 
I 2m j=-2 

W2n+2m-2i.5 k,2n+2m-2i c 

for m # 0, 

= 0 for m = 0. (18) 
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c 0,211 = 1, the coefficients wPej are of the form 

w 9.2 = l/4; W&l = l/2; wp.0 = -(W + 2p + 1)/4; 

wp.-1 = -P(P - 1)/2 QJu.4 = P(P - l)(P - 2MP - 3)/4; 
(19) 

and it is assumed that Ci,2n+2i vanish if either 2n + 2j < 0 or 1 j 1 > 2i. 
It has been shown in [4] that A,, behaves asymptotically as eBjg-n-(1/2), so in the 

evaluation of Q@), for example, up to /3- 15/2 only the first two terms of (11) need 
to be considered. The values of the first few coefficients bi in the expansion 

are: 

b,= 1; 6, = 318; b, = U/64; b, = 107/512; b, = 999/4096. (21) 

The combination of Eqs. (1) and (20) gives the required asymptotic expansion 

1 
T3ta) = 4(7x$/3)3/3 i=. 1 b&i + W)(4)-“, (22) 

where 5(m) is the Riemann zeta function2 

&n) = f q-“. 
q=l 

(23) 

Equations (12)-(14) and (17)-(18), although not very easy to use, allow us to 
calculate an arbitrary number of terms in the asymptotic expansion of Q,(p) 
or T3(01). Equation (10) can be used for the numerical evaluation of Q,(J) for an 
arbitrary /? > 0. It should be mentioned that the first three coefficients of the 
expansion (22) agree with that given by Dyson [7] and obtained by him using 
physical rather than mathematical arguments. 

REFERENCES 

1. D. J. AUSTEN AND P. D. LOLY, J. Compu?utionaI Phys. 11 (1973), 315. 
2. G. S. JOYCE, J. Math. Phys. 12 (1971), 1390. 
3. R. SIPS, Trans. Amer. Math. Sot. 64 (1949), 93. 
4. R. SIPS, Trans. Amer. Math. Sm. 90 (1959), 340. 

*For calculating the Reimann zeta function, see [8]. 



346 P. MODRAK 

5. N. W. MCLACHLAN, “Theory and Application of Mathieu Functions,” Clarendon Press, 
Oxford, 1947. 

6. G. S. JOYCE, Phys. Reu. Letters 19 (1967), 581. 
7. F. J. DYSON, Phys. Rev. 102 (1956), 1230. 
8. W. J. CODY, K. E. HILLSTROM, H. C. THACHER, JR., Math. Conzp. 25 (1971), 537. 

RECEIVED: October 31, 1974; REVISED: March 18, 1975 

Institute of‘ the Physical 
Chemistry of the Polish Academy 

qf Sciences 
Warsaw, Poland 

Printed in B&mm 


